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Abstract
It is quite plausible that colour superconductivity occurs in the inner regions
of neutron stars. At the same time, it is known that strong magnetic fields
exist in the interior of these compact objects. In this paper we discuss some
important effects that can occur in the colour superconducting core of compact
stars due to the presence of the stars’ magnetic field. In particular, we consider
the modification of the gluon dynamics for a colour superconductor with three
massless quark flavours in the presence of an external magnetic field. We show
that the long-range component of the external magnetic field that penetrates
the colour-flavour locked phase produces an instability for field values larger
than the charged gluons’ Meissner mass. As a consequence, the ground state
is restructured forming a vortex state characterized by the condensation of
charged gluons and the creation of magnetic flux tubes. In the vortex state
the magnetic field outside the flux tubes is equal to the applied one, while
inside the tubes its strength increases by an amount that depends on the
amplitude of the gluon condensate. This paramagnetic behaviour of the colour
superconductor can be relevant for the physics of compact stars.

PACS numbers: 12.38.Aw, 12.38.−t, 24.85.+p

1. Introduction

In the realm of high density and low temperature QCD baryons get so squeezed that they
start to overlap, thereby erasing any vestige of structure. Since in that situation the quarks
get very close to each other, their interactions become weak due to asymptotic freedom. At
densities of the order of ten times the nuclear density (∼2 − 4 × 1015 g cm−3) the weakly
interacting quarks can exist out of confinement. In nature the combination of such densities
and relatively low temperatures exist in the core of neutron stars, which are the remnant of
supernova explosions. It has been predicted on purely theoretical grounds that if the remnant
of a supernova explosion has sufficiently high density, it could lead to the formation of a quark
star [1]. This compact object would be something in between a neutron star and a black hole.
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At very low temperatures a finite density of fermions will fill out all the lowest available
energy states up to the Fermi energy. Fermions in the Fermi surface have the same energy,
but different momentum. If there were no attractive interaction between the fermions sitting
on the Fermi surface, this realization will be the system final state. However, an arbitrarily
weak attractive interaction among those fermions will render the existing ground state unstable
favouring the formation of fermion–fermion pairs. This restructuring of the ground state is
the basis of the phenomena of superconductivity and superfluidity.

In QCD the fundamental interaction between two quarks is attractive. Hence, at very large
densities the arbitrarily weak interaction between the asymptotically free quarks on the Fermi
surface will do the trick of restructuring the ground state through the formation of Cooper
pairs of quarks with opposite spin and momentum [2]. Because the quarks carry ‘colour’
charge, the quark–quark pairs will carry nonzero colour charge too, thus the name of colour
superconductivity.

On the other hand, it is well known that strong magnetic fields, as large as B ∼ 1012 −
1014 G, exist in the surface of neutron stars [3], while in magnetars they are in the range
B ∼ 1014 − 1015 G, and perhaps as high as 1016 G [4]. It is presumed from the virial theorem
[5] that the interior field in neutron stars could be as high as 1018 − 1019 G. If quark stars
are self-bound rather than gravitational-bound objects, the previous upper limit that has been
obtained by comparing the magnetic and gravitational energies could go even higher. Thus,
investigating the effect of strong magnetic fields in colour superconductivity is of interest for
the study of compact stars in astrophysics.

To consider the magnetic field interaction with the particles immersed in the colour
superconductor (CS) we should have in mind that there the quark–quark pairs carry both
colour and electric charges. Hence a CS is also an electric superconductor. One might think
that because of this, a magnetic field cannot penetrate the colour superconductor. But in this
complex medium something qualitatively new takes place; the electromagnetic field mixes
up with one of the gluons to form a new ‘electromagnetic’ field (called in the literature a
‘rotated’ electromagnetic field, where the ‘rotation’ takes place here in an inner space) [6].
This ‘rotated’ electromagnetic field Ã remains long range within the superconductor, because
the quark pairs are all neutral with respect to the corresponding ‘rotated’ electromagnetic
charge Q̃. Therefore, there is no Meissner effect for the corresponding rotated magnetic
field H̃ .

In recent works [7, 8] we showed that the properties of the CS can be substantially
transformed by the penetrating H̃ field. First, the pairing of (rotated) electrically charged
quarks is reinforced by the field [7]. Pairs of this kind have bounding energies which depend
on the magnetic-field strength and are bigger than those existing at zero field. Second,
the symmetry of the superconducting phase is changed, because now the magnetic field
differentiates the condensates which get contributions from pairs formed by Q̃-charged quarks
from those that only get contributions from pairs formed by Q̃-neutral quarks [7]. Due to
the symmetry change, the low-energy physics of the superconductor is also changed. This
last effect can have practical implications for astrophysics since all the transport properties
of the star are basically managed by the low-energy physics of the phase. In particular, the
cooling of the star is determined by the particles with the lowest energy; so a star with a core
of quark matter and a sufficiently large magnetic field can have a distinctive cooling process.
This is a point that deserves to be investigated in more detail. Finally, the magnetic field can
also influence the gluon dynamics [8]. At field strengths comparable to the charged gluon
Meissner mass an inhomogeneous condensate of Q̃-charged gluons is formed [8]. The gluon
condensate anti-screens the magnetic field due to the anomalous magnetic moment of these
spin-1 particles. Because of the anti-screening, this condensate does not give a mass to the Q̃
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photon, but instead amplifies the applied rotated magnetic field. This means that in the CS a
sort of anti-Meissner effect takes place. This last effect can be also of interest for astrophysics
since once the core of a compact star becomes colour superconducting, its internal magnetic
field can be boosted to values higher than those found in neutron stars with cores of nuclear
matter. This effect could open a new window to differentiate a neutron star made up entirely of
nuclear matter from one with a quark matter core. In this paper we will discuss the mechanism
that generates this kind of paramagnetism in colour superconductivity.

2. Gluon instability at H̃ � H̃C

There is a similarity between the electroweak symmetry-broken phase and the colour
superconducting phase of QCD. In the first model, the Higgs condensate although blocks the
penetration of the hypermagnetic field, allows a combination of the hyperfield and one of the
weak isospin fields to penetrate the symmetry-broken medium. As known, the corresponding
penetrating field is the electromagnetic field A, which is the only remaining long-range field
in that phase. The W± bosons, although neutral with respect to the hypercharge, acquire
electromagnetic charges in the new phase. In the CS, the role of the electromagnetic field is
played by the linear combination Ãµ = cos θAµ + sin θG8

µ of the photon Aµ and the gluon
G8

µ fields. Even though gluons are neutral with respect to the conventional electromagnetism,
in the colour superconducting phase they acquire Q̃ charges:

G1
µ G2

µ G3
µ G+

µ G−
µ I +

µ I−
µ G̃8

µ

0 0 0 1 −1 1 −1 0
, (1)

given in units of ẽ = e cos θ . The Q̃-charged fields in (1) correspond to the combinations
G±

µ ≡ 1√
2

[
G4

µ ∓ iG5
µ

]
and I±

µ ≡ 1√
2

[
G6

µ ∓ iG7
µ

]
.

Taking into account the Schwinger energy spectrum of a charged particle of spin s, charge
e, gyromagnetic ratio g, and mass m in a magnetic field H,

E2
n = (2n + 1)eH − geH · s + m2, (2)

we see that for spin-1 particles (i.e. g = 2 and spin projection −1, 0, +1) E2 < 0 for strong
enough magnetic fields (H > Hcr = m2/e). Therefore, when the field surpasses the critical
value Hcr, one of the modes of the charged gauge field becomes tachyonic (this is the well-
known ‘zero-mode problem’ found in the presence of a magnetic field for Yang–Mills fields
[9], for the W±

µ bosons in the electroweak theory [10, 11], and even for higher spin fields in
the context of string theory [12]).

Similarly to other spin-1 theories with magnetic instabilities [9–11], the charged gluons
in the magnetized CS suffer of instabilities for H̃ > H̃C = m2

M

/̃
e, where mM is the charged

gluon Meissner mass. To remove the magnetically induced instabilities, a vortex ground state
is formed [8]. This vortex state is characterized by the condensation of charged gluons and
the creation of ‘rotated’ magnetic flux tubes.

3. Gluon vortex condensate and paramagnetism

Since at densities high enough to neglect the strange quark mass, the ground state of three-
flavour quark matter corresponds to the colour-flavour locked (CFL) phase [6], we will focus
our analysis into this phase, although the conclusions can be easily extrapolated to other
phases, as the 2SC phase, for example.

Above the critical field
(
H̃C = m2

M

/̃
e
)

oriented along the Z-axis, the mass mode that
becomes tachyonic, corresponds to a charged field eigenvector of amplitude G in the (1, i)
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spatial (x, y)-direction for G− (G∗ in the (1,−i) direction for G+). Without loss of generality,
we are only considering in this analysis the set of charged fields G±

µ . To remove the tachyonic
mode, the ground state is restructured through the formation of a gauge field condensate G, as
well as an induced magnetic field B̃ = ∇ × Ã that is originated due to the backreaction of the
G condensate on the rotated electromagnetic field.

The condensate solutions can be found by minimizing with respect to G and B̃ the Gibbs
free energy density Gc = F − H̃ B̃ (F is the free energy density),

Gc = Fn0 − 2G†�̃2G − 2
(
2̃eB̃ − m2

M

)|G|2 + 2g2|G|4 + 1
2 B̃2 − H̃ B̃. (3)

In (3) Fn0 is the system free energy density in the normal-CFL phase (G = 0) at zero applied
field. Using (3) the minimum equations at H̃ ∼ H̃C for the condensate G and induced field B̃

respectively are

−�̃2G − (
2̃eB̃ − m2

M

)
G = 0, (4)

2̃e|G|2 − B̃ + H̃ = 0. (5)

Identifying G with the complex order parameter, equations (4)–(5) become analogous to the
Ginzburg–Landau equations for a conventional superconductor except for the B̃ contribution
in the second term in (4) and the sign of the first term in (5). The origin of both terms can
be traced back to the anomalous magnetic moment term 4̃eB̃|G|2 in the Gibbs free energy
density (3). Note that because of the different sign in the first term of (5), contrary to what
occurs in conventional superconductivity, the resultant field B̃ is stronger than the applied field
H̃ . Thus, when a gluon condensate develops, the magnetic field will be anti-screened and the
CS will behave as a paramagnet. The anti-screening of a magnetic field has been also found in
the context of the electroweak theory for magnetic fields H � M2

W

/
e ∼ 1024G [11]. Just as

in the electroweak case, the anti-screening in the CS is a direct consequence of the asymptotic
freedom of the underlying theory [11, 13].

We should highlight that the gluon condensate discussed in this work is not the only
charged spin-1 condensate generated in a theory with a large fermion density. As known [14],
a spin-1 condensate of W±-bosons can be originated at sufficiently high fermion density in the
context of the electroweak theory at zero magnetic field. However, the physical implications
of the gluon condensate induced by the magnetic field in the CS are fundamentally different
from those associated with the homogeneous W±-boson condensate of the dense electroweak
theory [14]. The gluon vortices in the magnetized CS boost the applied field, leaving the
Q̃ photon massless and thereby preserving the Ũem(1) symmetry. On the other hand, the
W±-boson condensate breaks the Uem(1) symmetry turning the electroweak system in an
electromagnetic superconductor [15].

The explicit solution of (4) with vanishing conditions at x → ±∞, can be found following
Abrikosov’s approach [16] to type II metal superconductivity for the limit situation when the
applied field is near the critical value Hc2. In our case we find

Gk = exp [−iky] exp

[
− (x − xk)

2

2ξ 2

]
, (6)

where k ≡ ky . From the experience with conventional type II superconductivity [17] it
is known that to minimize the energy the inhomogeneous condensate solutions secure a
periodic lattice structure. Then, putting on periodicity in the y-direction with period �y = b

restricts the values of k to a discrete set k = 2πn/b, n = 1, 2, . . . . This condition implies
that we have an infinite set of discrete solutions that superpose to form the general solution
G(x, y) = ∑

CnGn. This superposition of all the Gaussian solutions centred at different xn
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constitutes the vortex state that removes the instability in the whole space. On the other hand,
the discrete values of k imply periodicity in x, since the Gaussian solutions Gn are located
at xn = kn�̃0

2πH̃C
= n�̃0

bH̃C
, with �̃0 ≡ 2π/̃e. Assuming then that all Gn enter with equal weight,

the periodicity length in the x-direction is �x = �̃0

bH̃C
. Therefore, the magnetic flux through

each periodicity cell in the vortex lattice is quantized H̃C�x�y = �̃0, with �̃0 being the
flux quantum per unit vortex cell. In this semi-qualitative analysis we considered Abrikosov’s
ansatz of a rectangular lattice (i.e. all the coefficients Cn being equal). For the rectangular
lattice, the area of the unit cell is A = �x�y = �̃0/H̃C , so decreasing with H̃ .

4. Conclusions and final remarks

In conclusion, at low H̃ field the CS behaves as an insulator that can be penetrated by the H̃

field. When the H̃ field reaches the critical value H̃C = m2
M

/̃
e, the condensation of charged

gluons is triggered inducing the formation of a lattice of magnetic flux tubes and breaking the
translational and remaining rotational symmetries. Contrary to the situation in conventional
type II superconductors, where the applied field only penetrates through the flux tubes and
with a smaller strength, the vortex state in the CS has the peculiarity that outside the flux tube
the applied field H̃ totally penetrates the sample, while inside the tubes the magnetic field
becomes larger than H̃ . This anti-screening behaviour is similar to that of the electroweak
system at high magnetic field [11]. Note that as the Q̃ photons remain massless in the presence
of the condensate G, the Ũ (1)em symmetry remains unbroken.

A rough estimate of the critical field that produces the magnetic instability at the scale
of baryon densities typical of neutron-star cores (µ 	 200 − 400 MeV, αs(µ) 	 1/3) gives
H̃C 	 9.5 × 1016 G − 3.8 × 1017 G. Although these are significantly high magnetic fields,
they cannot be ruled out as acceptable values for the neutron-star core.

At present, there is a lot of activity among the physics community trying to find ways to
differentiate a neutron star made up entirely of nuclear matter from that with a quark colour
superconducting core. Some guiding ideas in this direction have been to link the phase of the
star’s core to measurable properties of the star as its radio-mass ratio, its cooling process, and
its rotational and vibrational properties. In this regard, the result that we are reporting on the
increase of the star’s magnetic field by the realization of colour superconductivity in its core
can also serve to that goal, and deserves further investigations.
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